ترکیب داده های لایدار و تصاویر هوایی بر مبنای شبکه های عصبی کانولوشن به منظور تشخیص مدل ساختمان ها

Authors

فاطمه علی دوست

fatemeh alidoost university of tehran, college of engineering, surveying and geospatial engineering, north karegar street, tehran, iran, postal code: 1439957131دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهران، کد پستی: 1439957131 حسین عارفی

hossein arefi university of tehran, college of engineering, surveying and geospatial engineering, north karegar street, tehran, iran, postal code: 1439957131دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهران، کد پستی: 1439957131

abstract

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیروانی، شیبدار و هرمی ارائه شده است که در آن از شبکه­های عصبی با معماری عمیق به منظور یادگیری سلسله مراتبی ویژگی­های استخراج شده از داده­های لایدار و تصاویر ارتوفتو استفاده می­شود. مهمترین مراحل این روش عبارتند از: آموزش مدل و یادگیری، بخش­بندی تصویر، استخراج ویژگی، و برچسب زدن عوارض. کلیه این مراحل در یک ساختار نظارت شده و با استفاده از یک شبکه عصبی کانولوشن که از قبل آموزش دیده شده است، اجرا می­شوند تا یک سیستم تشخیص الگوی اتوماتیک برای تشخیص انواع مختلف ساختمان­ها در یک ناحیه شهری فراهم گردد. در این روش، اطلاعات ارتفاعی، تولیدکننده­ی ویژگی­های هندسی پایدار برای شبکه عصبی کانولوشن هستند که در تعیین موقعیت محدوده هر سقف به کار گرفته می­شوند. شبکه عصبی کانولوشن یکی از انواع شبکه­های عصبی رو به جلو و با مفهوم درک و فهم چندلایه­ای است که شامل تعدادی لایه کانولوشن و نمونه­برداری می­باشد. از آنجایی که در روش پیشنهادی، مجموعه داده­ی آموزشی یک کتابخانه کوچک از مدل­های برچسب­دار است، لذا زمان محاسباتی برای یادگیری با استفاده از مدل­های از قبل آموزش دیده، به طور قابل توجهی کم و در حدود چند ساعت است. نتایج حاصله، نشان­دهنده موثر بودن تلفیق داده­های ارتفاعی و تصاویر رنگی با هم در یادگیری عمیق به منظور استخراج ساختمان­ها و شناسایی مدل سقف آنها به صورت همزمان است به طوری که خطای حد بالای اول و دقت آموزش مدل حاصل از تلفیق این دو دسته داده به ترتیب حدود 05/0 و 95 درصد است. همچنین، میزان موفقیت و صحت شناسایی ساختمان­ها به ترتیب حدود 97 و 69 درصد است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیرو...

full text

بررسی شبکه های عصبی کانولوشن عمیق جهت تشخیص سرطان پستان در تصاویر ترموگرافی

چکیده زمینه و هدف: سیستم‌های تشخیص Computer-aided design به طور گسترده در تشخیص افتراقی سرطان سینه استفاده می‌شوند. بنابراین بهبود دقت یک سیستم CAD به یکی از حوزه‌های مهم تحقیقاتی تبدیل شده‌است. در این مقاله به بررسی سیستم های CAD مبتنی بر شبکه های عصبی عمیق از نوع کانولوشن در جهت تشخیص سرطان پستان در تصاویر ترموگرافی پرداخته شد. روش بررسی: برای تحلیل مدل‌ها از پایگاه داده “Database...

full text

ترکیب ماشین بردار پشتیبان و مدل‌های پیش آموزش دیده‌ی شبکه عصبی کانولوشن به منظور طبقه‌بندی تومورهای مغزی در تصاویر ام‌آر‌آی

به دلیل محل رشد تومورهای مغزی در سر انسان، معمولا احتمال مرگ بر اثر این تومورها، شش برابر بیشتر از تومورهای دیگر است. سیستم‌های کامپیوتری را می‌توان برای کاهش تجویز درمان‌های نامناسب و کمک به متخصصان در تشخیص این بیماری استفاده کرد. در این مقاله از یک الگوریتم جدید به‌منظور تشخیص تومورها در 900 تصویر ام‌آر‌آی استفاده شده است. این الگوریتم مشتمل بر چهار فاز اصلی است که در فاز اول بعد از ورود داد...

full text

مدلسازی لوله های انتقال گاز با شبکه های عصبی مصنوعی به منظور تشخیص عیوب آنها

این مقاله معرفی  رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از شبکه عصبی مصنوعی به کمک امواج مکانیکی است که این روش بسیار ارزان تر و آسان تر از روش اولتراسوند است. که در حال حاضر مشغول به کارمی باشد. این خطوط معمولا در شرایط محیطی سخت و دور از دسترس و در مسافت های طولانی قرار دارند و استفاده از سیستم های که بصورت آنی و دقیق بتوانند عیب ها و نشتی های این لوله را گزارش دهند حیاتی  ...

full text

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

full text

ارائه مدل شناسایی تقلب مالیاتی بر مبنای ترکیب الگوریتم درخت تصمیم ID3 بهبود یافته و شبکه های عصبی پرسپترون چندلایه

درآمدهای مالیاتی یکی از مهم­ترین منابع درآمدی دولت و تأمین­کننده بخش عمده­ای از هزینه­های دولت است. در سالهای اخیر تقلب در صورت‌های مالی و اظهارنامه های مالیاتی به طور فزاینده­ای به‌ یک مشکل جدی برای کسب و کار، دولت و سرمایه‌گذاران تبدیل شده است. اکثر مؤدیان مالیاتی به دنبال راهی برای دستکاری در صورتهای مالی و کاهش سود مشمول مالیات ابرازی خود می­باشند. از این­رو، شناسایی متقلبین مالیاتی و شرکته...

full text

My Resources

Save resource for easier access later


Journal title:
مهندسی فناوری اطلاعات مکانی

جلد ۴، شماره ۴، صفحات ۱۰۳-۱۲۱

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023